Step 1: Use the hyperbolic identity and given condition.
We are given \( \cosh x = \csc\theta \).
Recall the identity for \( \cosh x \) and \( \coth x \):
\[
\cosh x = \frac{e^x + e^{-x}}{2}, \quad \coth x = \frac{\cosh x}{\sinh x}
\]
Step 2: Simplify using the trigonometric and hyperbolic relationship.
After applying appropriate identities and simplifying the equation:
\[
\coth^2\left(\frac{x}{2}\right) = \cot^2\left(\frac{\pi}{4} - \frac{\theta}{2}\right)
\]