Given equation:
\(\csc \theta + \cot \theta = 5\)
We use the identity:
\(\csc \theta = \frac{1}{\sin \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta}\)
Rewriting the equation:
\(\frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta} = 5\)
Taking common denominator:
\(\frac{1 + \cos \theta}{\sin \theta} = 5\)
Rearranging:
\(1 + \cos \theta = 5 \sin \theta\)
Squaring both sides:
\((1 + \cos \theta)^2 = (5 \sin \theta)^2\)
Expanding:
\(1 + 2\cos \theta + \cos^2 \theta = 25 \sin^2 \theta\)
Using the identity \(\sin^2 \theta = 1 - \cos^2 \theta\):
\(1 + 2\cos \theta + \cos^2 \theta = 25(1 - \cos^2 \theta)\)
Expanding:
\(1 + 2\cos \theta + \cos^2 \theta = 25 - 25\cos^2 \theta\)
Rearranging:
\(1 + 2\cos \theta + \cos^2 \theta + 25\cos^2 \theta = 25\)
\(26\cos^2 \theta + 2\cos \theta - 24 = 0\)
Solving the quadratic equation \(26x^2 + 2x - 24 = 0\) using the quadratic formula:
\(x = \frac{-2 \pm \sqrt{(2)^2 - 4(26)(-24)}}{2(26)}\)
\(x = \frac{-2 \pm \sqrt{4 + 2496}}{52}\)
\(x = \frac{-2 \pm \sqrt{2500}}{52}\)
\(x = \frac{-2 \pm 50}{52}\)
Solving for \(x\):
\(x = \frac{-2 + 50}{52} = \frac{48}{52} = \frac{12}{13}\)
\(x = \frac{-2 - 50}{52} = \frac{-52}{52} = -1\) (not valid as \(\cos \theta\) must be in range \([-1,1]\))
Thus, \(\cos \theta = \frac{12}{13}\).
Finding \(\sin \theta\) using \(\sin^2 \theta + \cos^2 \theta = 1\):
\(\sin^2 \theta = 1 - \left(\frac{12}{13}\right)^2\)
\(\sin^2 \theta = 1 - \frac{144}{169}\)
\(\sin^2 \theta = \frac{169 - 144}{169} = \frac{25}{169}\)
\(\sin \theta = \frac{5}{13}\) (as \(\theta\) is in the first quadrant, \(\sin \theta\) is positive)
Finding \(\tan \theta\):
\(\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{5/13}{12/13} = \frac{5}{12}\)
Thus, the correct answer is:
\(\frac{5}{12}\)