We are given:
\[
\cos\theta - \sin\theta = \sqrt{5} \sin\theta
\Rightarrow \cos\theta = (1 + \sqrt{5}) \sin\theta
\]
Now compute:
\[
\cos\theta + 4\sin\theta = (1 + \sqrt{5}) \sin\theta + 4\sin\theta = (5 + \sqrt{5})\sin\theta
\]
However, this contradicts the expected answer.
Let us square both sides:
\[
\cos\theta - \sin\theta = \sqrt{5}\sin\theta \Rightarrow \cos\theta = (1 + \sqrt{5})\sin\theta
\]
Divide both sides:
\[
\begin{align}
\tan\theta = \frac{1}{1 + \sqrt{5}}
\Rightarrow \cos\theta = \frac{1}{\sqrt{1 + \tan^2\theta}} = \sqrt{\frac{1}{1 + \left( \frac{1}{(1 + \sqrt{5})^2} \right)}}
\]
Alternatively, use the identity:
Let \( \cos\theta = a,\ \sin\theta = b \)
Given: \( a - b = \sqrt{5}b \Rightarrow a = b(\sqrt{5} + 1) \)
Also, \( a^2 + b^2 = 1 \Rightarrow b^2(\sqrt{5} + 1)^2 + b^2 = 1 \Rightarrow b^2[(\sqrt{5} + 1)^2 + 1] = 1 \)
\[
(\sqrt{5} + 1)^2 = 6 + 2\sqrt{5}, \quad \text{So: } b^2(7 + 2\sqrt{5}) = 1
\Rightarrow b = \frac{1}{\sqrt{7 + 2\sqrt{5}}}
\]
Then, \( \cos\theta + 4\sin\theta = a + 4b = b(\sqrt{5} + 1) + 4b = b(\sqrt{5} + 5) \)
Now check the expression:
\[
\cos\theta + 4\sin\theta = b(\sqrt{5} + 5) = \cos\theta \cdot \frac{\sqrt{5} + 5}{\sqrt{5} + 1} = \sqrt{5} \cos\theta
\]