Given \( \cos \theta = \frac{5}{13} \) in the fourth quadrant, where \( \cos \theta \) is positive and \( \tan \theta \) is negative. Using the Pythagorean identity:
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
\[
\sin^2 \theta = 1 - \left( \frac{5}{13} \right)^2 = 1 - \frac{25}{169} = \frac{144}{169}
\]
\[
\sin \theta = \pm \frac{12}{13}
\]
Since \( \theta \) is in the fourth quadrant, \( \sin \theta \) is negative:
\[
\sin \theta = -\frac{12}{13}
\]
Now, calculate \( \tan \theta \):
\[
\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-\frac{12}{13}}{\frac{5}{13}} = -\frac{12}{5}
\]
Thus, the value of \( \tan \theta \) is:
\[
\boxed{-\frac{12}{5}}
\]