Since \( \cos(\theta - \alpha), \cos \theta, \cos(\theta + \alpha) \) are in harmonic progression, their reciprocals \( \frac{1}{\cos(\theta - \alpha)}, \frac{1}{\cos \theta}, \frac{1}{\cos(\theta + \alpha)} \) are in arithmetic progression.
Therefore,
$$ \frac{2}{\cos \theta} = \frac{1}{\cos(\theta - \alpha)} + \frac{1}{\cos(\theta + \alpha)} $$
$$ \frac{2}{\cos \theta} = \frac{\cos(\theta + \alpha) + \cos(\theta - \alpha)}{\cos(\theta - \alpha) \cos(\theta + \alpha)} $$
Using the identities \( \cos(A + B) + \cos(A - B) = 2 \cos A \cos B \) and \( \cos(A - B) \cos(A + B) = \cos^2 A - \sin^2 B \):
$$ \frac{2}{\cos \theta} = \frac{2 \cos \theta \cos \alpha}{\cos^2 \theta - \sin^2 \alpha} $$
$$ 2 (\cos^2 \theta - \sin^2 \alpha) = 2 \cos^2 \theta \cos \alpha $$
$$ \cos^2 \theta - \sin^2 \alpha = \cos^2 \theta \cos \alpha $$
$$ \cos^2 \theta (1 - \cos \alpha) = \sin^2 \alpha $$
Using the identities \( 1 - \cos \alpha = 2 \sin^2 \frac{\alpha}{2} \) and \( \sin^2 \alpha = 4 \sin^2 \frac{\alpha}{2} \cos^2 \frac{\alpha}{2} \):
$$ \cos^2 \theta (2 \sin^2 \frac{\alpha}{2}) = 4 \sin^2 \frac{\alpha}{2} \cos^2 \frac{\alpha}{2} $$
If \( \sin^2 \frac{\alpha}{2} \neq 0 \), we can divide by \( 2 \sin^2 \frac{\alpha}{2} \):
$$ \cos^2 \theta = 2 \cos^2 \frac{\alpha}{2} $$
Divide by \( \cos^2 \theta \):
$$ 1 = 2 \frac{\cos^2 \frac{\alpha}{2}}{\cos^2 \theta} $$
$$ \cos^2 \theta = 2 \cos^2 \frac{\alpha}{2} $$
We need to find \( 2 \tan^2 \theta \).
From \( \cos^2 \theta (1 - \cos \alpha) = \sin^2 \alpha \):
$$ \cos^2 \theta = \frac{\sin^2 \alpha}{1 - \cos \alpha} = \frac{4 \sin^2 \frac{\alpha}{2} \cos^2 \frac{\alpha}{2}}{2 \sin^2 \frac{\alpha}{2}} = 2 \cos^2 \frac{\alpha}{2} $$
$$ \frac{1}{\sec^2 \theta} = 2 \frac{1}{1 + \tan^2 \frac{\alpha}{2}} $$
$$ 1 + \tan^2 \theta = \frac{1}{2} (1 + \tan^2 \frac{\alpha}{2}) $$
$$ 2 + 2 \tan^2 \theta = 1 + \tan^2 \frac{\alpha}{2} $$
$$ 2 \tan^2 \theta = \tan^2 \frac{\alpha}{2} - 1 $$