Step 1: Use identity:
\[
\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta
\]
Step 2: Use sum identities:
\[
(\cos\alpha + \cos\beta)^2 = \cos^2\alpha + \cos^2\beta + 2\cos\alpha\cos\beta = \frac{1}{9}
\]
\[
(\sin\alpha + \sin\beta)^2 = \sin^2\alpha + \sin^2\beta + 2\sin\alpha\sin\beta = \frac{1}{16}
\]
Step 3: Subtract and simplify:
\[
\cos\alpha\cos\beta = \frac{1}{2} \left[ \frac{1}{9} - \cos^2\alpha - \cos^2\beta \right], \text{ similarly for sine terms}
\]
Final:
\[
\cos(\alpha + \beta) = \boxed{\frac{7}{25}}
\]