We are given the conditions:
\[
\cos \alpha + \cos \beta + \cos \gamma = 0, \quad \sin \alpha + \sin \beta + \sin \gamma = 0.
\]
Step 1: Use of Identity
Using the identity for cubes:
\[
x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx).
\]
Since \( \cos \alpha + \cos \beta + \cos \gamma = 0 \) and \( \sin \alpha + \sin \beta + \sin \gamma = 0 \), we substitute:
\[
\cos^3 \alpha + \cos^3 \beta + \cos^3 \gamma = 3 \cos \alpha \cos \beta \cos \gamma.
\]
\[
\sin^3 \alpha + \sin^3 \beta + \sin^3 \gamma = 3 \sin \alpha \sin \beta \sin \gamma.
\]
Step 2: Square and Sum
\[
(\cos^3 \alpha + \cos^3 \beta + \cos^3 \gamma)^2 + (\sin^3 \alpha + \sin^3 \beta + \sin^3 \gamma)^2
\]
\[
= 9 (\cos^2 \alpha \cos^2 \beta \cos^2 \gamma + \sin^2 \alpha \sin^2 \beta \sin^2 \gamma).
\]
Using trigonometric identities:
\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \frac{3}{4}, \quad \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = \frac{3}{4}.
\]
\[
\cos^2 \alpha \cos^2 \beta \cos^2 \gamma + \sin^2 \alpha \sin^2 \beta \sin^2 \gamma = \frac{1}{16}.
\]
Step 3: Compute Final Value
\[
9 \times \frac{1}{16} = \frac{9}{16}.
\]
Thus, the correct answer is:
\[
\boxed{\frac{9}{16}}
\]