Step 1: Recall trigonometric identity.
\[
\sin 2A = 2 \sin A \cos A
\]
Step 2: Find $\sin A$.
Given $\cos A = \dfrac{\sqrt{3}}{2}$, therefore $\sin A = \dfrac{1}{2}$ (since $\sin^2 A + \cos^2 A = 1$).
Step 3: Substitute values.
\[
\sin 2A = 2 \times \dfrac{1}{2} \times \dfrac{\sqrt{3}}{2} = \dfrac{\sqrt{3}}{2}
\]
Wait, for $\cos A = \dfrac{\sqrt{3}}{2}$, angle $A = 30^\circ$, so $2A = 60^\circ$ and $\sin 60^\circ = \dfrac{\sqrt{3}}{2}$. Hence correct option is (D).
Step 4: Correcting conclusion.
Therefore, the correct value is $\sin 2A = \dfrac{\sqrt{3}}{2}$.