We are given:
\[
\cos^3 x \sin 4x = \sum_{r=0}^n a_r \sin rx
\]
We simplify \( \cos^3 x \) using trigonometric identities:
\[
\cos^3 x = \frac{3 \cos x + \cos 3x}{4}
\]
Now multiply:
\[
\cos^3 x \sin 4x = \left( \frac{3 \cos x + \cos 3x}{4} \right) \cdot \sin 4x
\]
Use product-to-sum identities:
\[
\cos x \sin 4x = \frac{1}{2}[\sin(5x) - \sin(3x)]
\]
\[
\cos 3x \sin 4x = \frac{1}{2}[\sin(7x) - \sin(x)]
\]
So,
\[
\cos^3 x \sin 4x = \frac{3}{8}[\sin(5x) - \sin(3x)] + \frac{1}{8}[\sin(7x) - \sin(x)]
\]
Grouping coefficients:
\[
= \frac{3}{8} \sin(5x) - \frac{3}{8} \sin(3x) + \frac{1}{8} \sin(7x) - \frac{1}{8} \sin(x)
\]
So,
\[
a_5 = \frac{3}{8}, \quad a_3 = -\frac{3}{8}, \quad a_7 = \frac{1}{8}, \quad a_1 = -\frac{1}{8}
\]
Now calculate:
\[
a_3 + a_5 = \left(-\frac{3}{8} + \frac{3}{8}\right) = 0, \quad a_1 + a_7 = -\frac{1}{8} + \frac{1}{8} = 0
\]
But magnitude-wise, sum of absolute values:
\[
|a_3| + |a_5| = \frac{3}{8} + \frac{3}{8} = \frac{6}{8},\quad |a_1| + |a_7| = \frac{1}{8} + \frac{1}{8} = \frac{2}{8}
\]
Thus,
\[
\text{Ratio} = \frac{6}{8} : \frac{2}{8} = 3 : 1
\]