Step 1: Understanding the equation.
We are given \( \cos 2\theta = \sin \alpha \). Using the identity \( \cos 2\theta = \cos(\pi - 2\theta) \), we equate it to \( \sin \alpha \). This leads to multiple possible angles for \( \theta \), and we derive the general solution.
Step 2: Analyzing the options.
Option (D) correctly matches the derived formula for \( \theta \), which is \( \pi n \pm \left( \frac{\pi}{4} - \frac{\alpha}{2} \right), n \in \mathbb{Z} \). This formula reflects the periodic nature of trigonometric functions.
Step 3: Conclusion.
Thus, the correct answer is option (D).