Question:

If \( \cos 2\theta = \sin \alpha \), then \( \theta = \)

Show Hint

For equations involving trigonometric functions, always consider multiple angle identities and the periodic nature of trigonometric functions to derive general solutions.
Updated On: Jan 30, 2026
  • \( 2\pi n \pm \left( \frac{\pi}{2} - \alpha \right), n \in \mathbb{Z} \)
  • \( \pi n \pm \left( \frac{\pi}{4} + \frac{\alpha}{2} \right), n \in \mathbb{Z} \)
  • \( \frac{1}{2} \left[ n\pi + (-1)^n \alpha \right], n \in \mathbb{Z} \)
  • \( \pi n \pm \left( \frac{\pi}{4} - \frac{\alpha}{2} \right), n \in \mathbb{Z} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Understanding the equation.
We are given \( \cos 2\theta = \sin \alpha \). Using the identity \( \cos 2\theta = \cos(\pi - 2\theta) \), we equate it to \( \sin \alpha \). This leads to multiple possible angles for \( \theta \), and we derive the general solution.

Step 2: Analyzing the options.
Option (D) correctly matches the derived formula for \( \theta \), which is \( \pi n \pm \left( \frac{\pi}{4} - \frac{\alpha}{2} \right), n \in \mathbb{Z} \). This formula reflects the periodic nature of trigonometric functions.

Step 3: Conclusion.
Thus, the correct answer is option (D).
Was this answer helpful?
0
0