Question:

If cos1(pa)+cos1(qb)=α, then p2a2+kcosα+q2b2=sin2α where k is equal to:

Updated On: Jun 23, 2024
  • (A) 2pqab
  • (B) 2pqab
  • (C) pqab
  • (D) pqab
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Explanation:
Given,p2a2+kcosα+q2b2=sin2α......(i)cos1(pa)+cos1(qb)=αAs we know,cos1x+cos1y=cos1(xy1x21y2)cos1(pqab1p2a21q2b2)=αcosα=(pqab1p2a21q2b2)pqabcosα=1p2a21q2b2Squaring both sides, we get(pqabcosα)2=(1p2a21q2b2)2(pq)2(ab)2+cos2α2pqabcosα=(1p2a2)(1q2b2)(pq)2(ab)2+cos2α2pqabcosα=1p2a2q2b2+(pq)2(ab)2sin2α=p2a2+q2b22pqabcosα.....(ii)Comparing equation (i) and (ii), we getk=2pqabHence, the correct option is (A).
Was this answer helpful?
0
0