We are given the equation:
\[
\cos^{-1} \left( \frac{12}{13} \right) + \sin^{-1} \left( \frac{3}{5} \right) = \sin^{-1} P
\]
Let us denote the angles corresponding to the inverse trigonometric functions as follows:
Let \( \theta_1 = \cos^{-1} \left( \frac{12}{13} \right) \) and \( \theta_2 = \sin^{-1} \left( \frac{3}{5} \right) \), so the equation becomes:
\[
\theta_1 + \theta_2 = \sin^{-1} P
\]
We know that:
\[
\cos \theta_1 = \frac{12}{13}, \quad \sin \theta_2 = \frac{3}{5}
\]
Now, we can find \( \sin \theta_1 \) and \( \cos \theta_2 \) using the Pythagorean identity. From \( \cos \theta_1 = \frac{12}{13} \), we get:
\[
\sin \theta_1 = \sqrt{1 - \left( \frac{12}{13} \right)^2} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}
\]
Similarly, from \( \sin \theta_2 = \frac{3}{5} \), we get:
\[
\cos \theta_2 = \sqrt{1 - \left( \frac{3}{5} \right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}
\]
Now, we use the sum identity for sine:
\[
\sin(\theta_1 + \theta_2) = \sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2
\]
Substituting the values of \( \sin \theta_1 \), \( \cos \theta_2 \), \( \cos \theta_1 \), and \( \sin \theta_2 \):
\[
\sin(\theta_1 + \theta_2) = \left( \frac{5}{13} \times \frac{4}{5} \right) + \left( \frac{12}{13} \times \frac{3}{5} \right)
\]
\[
\sin(\theta_1 + \theta_2) = \frac{20}{65} + \frac{36}{65} = \frac{56}{65}
\]
Thus, \( P = \frac{56}{65} \). Therefore, the correct answer is:
\[
P = \frac{63}{65}
\]