If \( C_j \) stands for \( \binom{n}{j} \), then:
\[
\frac{C_1}{C_0} + 2 \times \frac{C_2}{C_1} + 3 \times \frac{C_3}{C_2} + ... + n \times \frac{C_n}{C_{n-1}}
\]
Show Hint
Use properties of binomial coefficients and their sums for simplification. The weighted sum can often be simplified using binomial expansion identities.
The given sum can be interpreted as the weighted sum of binomial coefficients. Using combinatorial identities, we find that the sum simplifies to:
\[
\sum_{k=1}^{n} k = n \times 2^{n-1}
\]
Thus, the correct answer is option (4).