To determine the dimensional formula of the expression \( CV^2 \), we need to understand the dimensions of each component involved:
Now, consider the expression \( CV^2 \):
\( CV^2 = C \times V \times V \).
Substituting the dimensional formulas, we get:
\( CV^2 = [M^{-1}L^{-2}T^4A^2] \times [ML^2T^{-3}A^{-1}] \times [ML^2T^{-3}A^{-1}] \).
Simplifying the expression by multiplying the dimensions:
\( CV^2 = M^{-1}L^{-2}T^4A^2 \times M^2L^4T^{-6}A^{-2} = M^{1}L^{2}T^{-2}A^{0} \).
Therefore, the dimensional formula for \( CV^2 \) is \( [MLT^{-2}A^0] \).
| Option | Dimensional Formula |
| 1 | \([MLT^{-2}A^0]\) |
| 2 | \([MLT^{-2}A^{-1}]\) |
| 3 | \([M^{1}L^{2}T^{-2}A^0]\) |
| 4 | \([ML^{-3}T^{1}A]\) |
The correct option is 1: \([MLT^{-2}A^{0}]\).

200 ml of an aqueous solution contains 3.6 g of Glucose and 1.2 g of Urea maintained at a temperature equal to 27$^{\circ}$C. What is the Osmotic pressure of the solution in atmosphere units?
Given Data R = 0.082 L atm K$^{-1}$ mol$^{-1}$
Molecular Formula: Glucose = C$_6$H$_{12}$O$_6$, Urea = NH$_2$CONH$_2$