The curve is an ellipse \( \frac{x^2}{9} + \frac{y^2}{3} = 1 \).
Here \( a^2=9, b^2=3 \).
The equation of the normal to the ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) at a point \( (x_0, y_0) \) is \( \frac{a^2x}{x_0} - \frac{b^2y}{y_0} = a^2-b^2 \).
Or, at parametric point \( (a\cos\phi, b\sin\phi) \), the normal is \( ax\sec\phi - by\operatorname{cosec}\phi = a^2-b^2 \).
Point 1: \( P_1 = (3\cos\theta, \sqrt{3}\sin\theta) \).
This is \( (a\cos\theta, b\sin\theta) \) with \( a=3, b=\sqrt{3} \).
Slope of tangent at \(P_1\): Differentiate \( x^2+3y^2=9 \implies 2x+6y\frac{dy}{dx}=0 \implies \frac{dy}{dx} = -\frac{2x}{6y} = -\frac{x}{3y} \).
At \(P_1\), \( m_{T1} = -\frac{3\cos\theta}{3(\sqrt{3}\sin\theta)} = -\frac{\cos\theta}{\sqrt{3}\sin\theta} \).
Slope of normal at \(P_1\), \( m_{N1} = -1/m_{T1} = \frac{\sqrt{3}\sin\theta}{\cos\theta} = \sqrt{3}\tan\theta \).
Point 2: \( P_2 = (-3\sin\theta, \sqrt{3}\cos\theta) \).
Let's check if this point is \( (a\cos\phi, b\sin\phi) \).
\( a\cos\phi = -3\sin\theta \implies 3\cos\phi = -3\sin\theta \implies \cos\phi = -\sin\theta = \cos(\pi/2+\theta) \).
So \( \phi = \pi/2+\theta \).
\( b\sin\phi = \sqrt{3}\cos\theta \implies \sqrt{3}\sin\phi = \sqrt{3}\cos\theta \implies \sin\phi = \cos\theta = \sin(\pi/2-\theta) \).
Also \( \sin(\pi/2+\theta) = \cos\theta \).
This matches.
So, point \(P_2\) corresponds to parameter \( \phi = \pi/2+\theta \).
Slope of normal at \(P_2\), \( m_{N2} = \sqrt{3}\tan\phi = \sqrt{3}\tan(\pi/2+\theta) = \sqrt{3}(-\cot\theta) = -\sqrt{3}\cot\theta \).
Angle \( \beta \) between normals: \( \tan\beta = \left|\frac{m_{N1}-m_{N2}}{1+m_{N1}m_{N2}}\right| \).
\( m_{N1}m_{N2} = (\sqrt{3}\tan\theta)(-\sqrt{3}\cot\theta) = -3(\tan\theta\cot\theta) = -3(1) = -3 \).
\( m_{N1}-m_{N2} = \sqrt{3}\tan\theta - (-\sqrt{3}\cot\theta) = \sqrt{3}(\tan\theta+\cot\theta) \)
\[ = \sqrt{3}\left(\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}\right) = \sqrt{3}\left(\frac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta}\right) = \sqrt{3}\frac{1}{\frac{1}{2}\sin 2\theta} = \frac{2\sqrt{3}}{\sin 2\theta} \]
\[ \tan\beta = \left|\frac{2\sqrt{3}/\sin 2\theta}{1+(-3)}\right| = \left|\frac{2\sqrt{3}/\sin 2\theta}{-2}\right| = \left|-\frac{\sqrt{3}}{\sin 2\theta}\right| \]
Since \( \theta \in (0, \pi/2) \), \( 2\theta \in (0, \pi) \), so \( \sin 2\theta>0 \).
\[ \tan\beta = \frac{\sqrt{3}}{\sin 2\theta} \]
We need to match this with options.
This means \( \cot\beta = \frac{\sin 2\theta}{\sqrt{3}} \implies \sqrt{3}\cot\beta = \sin 2\theta \).
This matches option (3).