Question:

If \[ \begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}, \] then the value of \[ \left( \frac{24}{x} + \frac{24}{y} \right) \] is:

Show Hint

When solving matrix equations, compare corresponding elements to derive equations for unknowns. Simplify expressions by substituting these values back into the problem, ensuring all calculations align with the matrix structure.
Updated On: Jan 16, 2025
  • 7
  • 6
  • 8
  • 18
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

From the equality of the matrices: \[ \begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}, \] 

Step 1: Use the relationship between \( x \) and \( y \) 
The given equations are: \[ x + y = 6 \quad \text{and} \quad xy = 8. \] These are the sum and product of the roots of a quadratic equation. Let the quadratic equation be: \[ t^2 - (x + y)t + xy = 0. \] 

Substitute \( x + y = 6 \) and \( xy = 8 \): \[ t^2 - 6t + 8 = 0. \] 

Factorize the equation: \[ t^2 - 6t + 8 = (t - 2)(t - 4) = 0. \] Thus, \( x = 2 \) and \( y = 4 \) (or vice versa). 

Step 2: Compute \( \frac{24}{x} + \frac{24}{y} \) 
Substitute \( x = 2 \) and \( y = 4 \): \[ \frac{24}{x} + \frac{24}{y} = \frac{24}{2} + \frac{24}{4}. \] Simplify: \[ \frac{24}{2} + \frac{24}{4} = 12 + 6 = 18. \]

Was this answer helpful?
0
0