A symmetric matrix satisfies the condition that the element at position \((i,j)\) is equal to the element at position \((j,i)\).
So, for the matrix to be symmetric:
\[
2k^2 - 5k + 3 = 3k - 3
\]
Rearranging:
\[
2k^2 - 5k + 3 - 3k + 3 = 0
\]
\[
2k^2 - 8k + 6 = 0
\]
Divide the entire equation by 2:
\[
k^2 - 4k + 3 = 0
\]
Solving the quadratic:
\[
k = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} = \frac{4 \pm \sqrt{16 - 12}}{2} = \frac{4 \pm 2}{2}
\]
\[
⇒ k = 3 \text{ or } k = 1
\]
Now check both values to see which make the matrix symmetric:
Try \(k = 3\):
- Top right = \(2(3)^2 - 5(3) + 3 = 18 - 15 + 3 = 6\)
- Bottom left = \(3(3) - 3 = 6\)
They match \(⇒ \) Matrix is symmetric.
So, the correct value is \( \boxed{3} \).