Question:

If \( \bar{x} = 4 \), \( \bar{y} = 8 \), \( \sigma_x = 2 \), \( \sigma_y = 3 \), and \( r = 0.3 \), then the line of regression of \( y \) on \( x \) is

Show Hint

The regression line \( y \) on \( x \) uses the formula \( y - \bar{y} = r \frac{\sigma_y}{\sigma_x}(x - \bar{x}) \).
Updated On: May 4, 2025
  • \( y = 0.45x + 6.2 \)
  • \( y = 0.55x + 4.2 \)
  • \( y = 0.45x - 6.2 \)
  • \( y = 0.55x - 4.2 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The regression line of \( y \) on \( x \) is given by: \[ y - \bar{y} = r \frac{\sigma_y}{\sigma_x} (x - \bar{x}) \] Substitute values: \[ y - 8 = 0.3 \cdot \frac{3}{2} (x - 4) = 0.45(x - 4) \Rightarrow y = 0.45x + [8 - 0.45 \cdot 4] = 0.45x + 6.2 \]
Was this answer helpful?
0
0