To solve the problem, we are given that \( \cot \theta = \frac{b}{a} \), and we are asked to find the value of:
\[ \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} \]
1. Express sin θ and cos θ in terms of a and b:
Given \( \cot \theta = \frac{b}{a} \), we can construct a right triangle where:
- Adjacent side = b
- Opposite side = a
- Hypotenuse = \( \sqrt{a^2 + b^2} \)
So, from the triangle:
\[ \sin \theta = \frac{a}{\sqrt{a^2 + b^2}}, \quad \cos \theta = \frac{b}{\sqrt{a^2 + b^2}} \]
2. Substitute into the expression:
\[ \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} = \frac{\frac{b}{\sqrt{a^2 + b^2}} + \frac{a}{\sqrt{a^2 + b^2}}}{\frac{b}{\sqrt{a^2 + b^2}} - \frac{a}{\sqrt{a^2 + b^2}}} = \frac{b + a}{b - a} \]
3. Final simplification:
\[ \frac{b + a}{b - a} \]
Final Answer:
The correct answer is option (B): \( \frac{b + a}{b - a} \).
Let \(\alpha\ and\ \beta\) be real numbers such that \(-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4}\). If \(\sin (\alpha+\beta)=\frac{1}{3}\ and\ \cos (\alpha-\beta)=\frac{2}{3}\), then the greatest integer less than or equal to
\(\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2\) is ____