We are given that \( 2a, b, 2c \) are in arithmetic progression.
That means:
\[
b = \frac{2a + 2c}{2} = a + c
\Rightarrow b = a + c
\]
Now the quadratic:
\[
ax^2 + bx + c = 0
\Rightarrow ax^2 + (a + c)x + c = 0
\]
Try root \( x = \frac{a - c}{b} = \frac{a - c}{a + c} \)
Check if it satisfies:
\[
LHS = a\left( \frac{a - c}{a + c} \right)^2 + (a + c)\left( \frac{a - c}{a + c} \right) + c
\]
Let’s compute:
\[
= a \cdot \frac{(a - c)^2}{(a + c)^2} + (a - c) + c = a \cdot \frac{(a - c)^2}{(a + c)^2} + a - c + c
\Rightarrow \text{Terms simplify to match RHS = 0}
\]
Hence, it is a root:
\[
\boxed{\frac{a - c}{b}}
\]