>
Exams
>
Mathematics
>
Polynomials
>
if are the zeroes of the quadratic polynomial ax 2
Question:
If
α
,
β
\alpha,\beta
α
,
β
are the zeroes of the quadratic polynomial
a
x
2
+
b
x
+
c
ax^2 + bx+c
a
x
2
+
b
x
+
c
,
a
≠
0
a ≠0
a
=
0
then
α
2
+
β
2
=
\alpha^2+\beta^2=
α
2
+
β
2
=
TS POLYCET - 2023
TS POLYCET
Updated On:
May 7, 2024
1
a
2
(
b
2
+
2
a
c
)
\frac{1}{a^2}(b^2+2ac)
a
2
1
(
b
2
+
2
a
c
)
1
a
2
(
c
2
+
2
a
b
)
\frac{1}{a^2}(c^2+2ab)
a
2
1
(
c
2
+
2
ab
)
1
a
2
(
b
2
−
2
a
c
)
\frac{1}{a^2}(b^2-2ac)
a
2
1
(
b
2
−
2
a
c
)
1
a
2
(
c
2
−
2
a
b
)
\frac{1}{a^2}(c^2-2ab)
a
2
1
(
c
2
−
2
ab
)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
The correct option is (C):
1
a
2
(
b
2
−
2
a
c
)
\frac{1}{a^2}(b^2-2ac)
a
2
1
(
b
2
−
2
a
c
)
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Polynomials
If
α
,
β
,
γ
α,β,γ
α
,
β
,
γ
are the roots of
4
x
3
−
6
x
2
+
7
x
+
3
=
0
4x^3-6x^2+7x+3=0
4
x
3
−
6
x
2
+
7
x
+
3
=
0
, then the value of
α
β
+
β
γ
+
γ
α
αβ+βγ+γα
α
β
+
β
γ
+
γ
α
is
AP POLYCET - 2024
Mathematics
Polynomials
View Solution
If the zeroes of the quadratic polynomial
a
x
2
+
b
x
+
c
(
c
≠
0
)
ax^2+bx+c \ (c≠0)
a
x
2
+
b
x
+
c
(
c
=
0
)
are equal, then
AP POLYCET - 2024
Mathematics
Polynomials
View Solution
If
α
α
α
and
β
β
β
are the zeroes of the polynomial
f
(
x
)
=
6
x
2
+
x
−
2
f(x)=6x^2+x-2
f
(
x
)
=
6
x
2
+
x
−
2
, then the sum of zeroes is
AP POLYCET - 2024
Mathematics
Polynomials
View Solution
Which of the following is a polynomial?
AP POLYCET - 2024
Mathematics
Polynomials
View Solution
Let
f
(
x
)
f(x)
f
(
x
)
be a polynomial function satisfying
f
(
x
)
⋅
f
(
1
x
)
=
f
(
x
)
+
f
(
1
x
)
.
f(x) \cdot f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right).
f
(
x
)
⋅
f
(
x
1
)
=
f
(
x
)
+
f
(
x
1
)
.
If
f
(
4
)
=
65
f(4) = 65
f
(
4
)
=
65
and
I
1
,
I
2
,
I
3
I_1, I_2, I_3
I
1
,
I
2
,
I
3
are in GP, then
f
′
(
I
1
)
,
f
′
(
I
2
)
,
f
′
(
I
3
)
f'(I_1), f'(I_2), f'(I_3)
f
′
(
I
1
)
,
f
′
(
I
2
)
,
f
′
(
I
3
)
are in:
VITEEE - 2024
Mathematics
Polynomials
View Solution
View More Questions
Questions Asked in TS POLYCET exam
A tangent AB at a point 'A' of a circle of radius 7 cm meets a line through the centre 'C' at a point 'B' so that CB=11 cm, then the length of AB =
TS POLYCET - 2023
Tangent to a Circle
View Solution
△
A
B
C
∼
△
D
E
F
\triangle ABC \sim \triangle DEF
△
A
BC
∼
△
D
EF
and their areas are respectively
81
cm
2
and
225
cm
2
81 \text{ cm}^2 \quad \text{and} \quad 225 \text{ cm}^2
81
cm
2
and
225
cm
2
; if
E
F
=
5
c
m
EF = 5 cm
EF
=
5
c
m
, then
B
C
=
BC=
BC
=
TS POLYCET - 2023
Triangles
View Solution
If
sec
θ
=
2
3
\sec \theta = \frac{2}{\sqrt{3}}
sec
θ
=
3
2
,then
c
o
s
θ
=
cosθ=
cos
θ
=
TS POLYCET - 2023
Trigonometry
View Solution
The value of
tan
2
6
∘
.
tan
6
4
∘
\tan 26^\circ. \tan 64^\circ
tan
2
6
∘
.
tan
6
4
∘
is
TS POLYCET - 2023
Trigonometry
View Solution
In the figure, if AP and AQ are the two tangents to a circle with centre 'O' so that
∠
O
Q
P
=
15
°
∠OQP=15°
∠
OQP
=
15°
, then
∠
Q
A
P
=
∠QAP=
∠
Q
A
P
=
TS POLYCET - 2023
Tangent to a Circle
View Solution
View More Questions