We are given the expression: \[ (\sin \alpha + \sin \beta)^2 + (\cos \alpha + \cos \beta)^2 \] We can expand each square term: \[ (\sin \alpha + \sin \beta)^2 = \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta \] \[ (\cos \alpha + \cos \beta)^2 = \cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta \] Now, adding the two expanded expressions: \[ \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta + \cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta \] Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we simplify: \[ 1 + 1 + 2 (\sin \alpha \sin \beta + \cos \alpha \cos \beta) \] Using the sum formula for cosines, \( \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \), we get: \[ 2 + 2 \cos(\alpha - \beta) \] Since \( \alpha + \beta = 90^\circ \) in a right triangle, \( \cos(\alpha - \beta) = \cos 2\alpha \). Therefore, the final expression becomes: \[ 2(1 + \sin 2\alpha) \]
The correct option is (B) : \({2(1 + \sin 2\alpha)}\)
Since \(\alpha\) and \(\beta\) are two acute angles of a right triangle, we have \(\alpha + \beta = 90^\circ\), so \(\beta = 90^\circ - \alpha\).
We are asked to find the value of \((\sin\alpha+\sin\beta)^2+(\cos\alpha+\cos\beta)^2\).
Expanding the expression, we get:
\(\sin^2\alpha + 2\sin\alpha\sin\beta + \sin^2\beta + \cos^2\alpha + 2\cos\alpha\cos\beta + \cos^2\beta\)
Rearranging the terms, we have:
\((\sin^2\alpha + \cos^2\alpha) + (\sin^2\beta + \cos^2\beta) + 2(\sin\alpha\sin\beta + \cos\alpha\cos\beta)\)
Using the identity \(\sin^2\theta + \cos^2\theta = 1\), we get:
\(1 + 1 + 2(\cos\alpha\cos\beta + \sin\alpha\sin\beta)\)
Using the identity \(\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta\), we get:
\(2 + 2\cos(\alpha - \beta)\)
Since \(\beta = 90^\circ - \alpha\), we have \(\alpha - \beta = \alpha - (90^\circ - \alpha) = 2\alpha - 90^\circ\).
Then, \(\cos(\alpha - \beta) = \cos(2\alpha - 90^\circ) = \cos(-(90^\circ - 2\alpha)) = \cos(90^\circ - 2\alpha) = \sin(2\alpha)\).
Substituting this back into our expression, we get:
\(2 + 2\sin(2\alpha) = 2(1 + \sin(2\alpha))\)
Therefore, the expression simplifies to \(2(1 + \sin2\alpha)\).
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.