Concept:
The signum function is defined as: \[ \operatorname{sgn}(p) = \begin{cases} +1, & p>0\\ 0, & p=0\\ -1, & p<0 \end{cases} \] For this problem, we only consider intervals where the trigonometric functions are defined and non-zero.
Step 1: Analyze by Quadrants
Consider one full cycle \(0<x<2\pi\). First Quadrant \((0, \frac{\pi}{2})\):
\[ \sin x>0,\ \cos x>0,\ \tan x>0,\ \cot x>0 \] \[ y = 1+1+1+1 = 4 \] Second Quadrant \((\frac{\pi}{2}, \pi)\):
\[ \sin x>0,\ \cos x<0,\ \tan x<0,\ \cot x<0 \] \[ y = 1-1-1-1 = -2 \] Third Quadrant \((\pi, \frac{3\pi}{2})\):
\[ \sin x<0,\ \cos x<0,\ \tan x>0,\ \cot x>0 \] \[ y = -1-1+1+1 = 0 \] Fourth Quadrant \((\frac{3\pi}{2}, 2\pi)\):
\[ \sin x<0,\ \cos x>0,\ \tan x<0,\ \cot x<0 \] \[ y = -1+1-1-1 = -2 \]
Step 2: Determine the Range of \(y\)
Possible values of \(y\): \[ \{4,\ -2,\ 0\} \]
Step 3: Sum of Elements in the Range
\[ 4 + (-2) + 0 = 2 \] \[ \boxed{2} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.