The number of zeroes of a polynomial \( y = p(x) \) as shown below is:
In the circuit below, \( M_1 \) is an ideal AC voltmeter and \( M_2 \) is an ideal AC ammeter. The source voltage (in Volts) is \( v_s(t) = 100 \cos(200t) \). What should be the value of the variable capacitor \( C \) such that the RMS readings on \( M_1 \) and \( M_2 \) are 25 V and 5 A, respectively?
The general solution of the differential equation \[ (x + y)y \,dx + (y - x)x \,dy = 0 \] is:
Find the area of the region (in square units) enclosed by the curves: \[ y^2 = 8(x+2), \quad y^2 = 4(1-x) \] and the Y-axis.
Evaluate the integral: \[ I = \int_{-3}^{3} |2 - x| dx. \]
Evaluate the integral: \[ I = \int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} dx. \]