We are given that \( \alpha, \beta, \gamma \) are the roots of the equation \( x^3 + 2x + 5 = 0 \). According to Vieta's formulas:
\[
\alpha + \beta + \gamma = 0, \quad \alpha\beta + \beta\gamma + \gamma\alpha = 2, \quad \alpha\beta\gamma = -5
\]
We need to find \( \sum \frac{\beta + \gamma}{\alpha^2} \). Using the fact that \( \beta + \gamma = -\alpha \), we have:
\[
\sum \frac{\beta + \gamma}{\alpha^2} = \frac{-\alpha}{\alpha^2} = \frac{-1}{\alpha}
\]
Thus, the value of \( \sum \frac{\beta + \gamma}{\alpha^2} = \frac{2}{5} \).