We are given the cubic equation \( x^3 + ax^2 + bx + c = 0 \) with roots \( \alpha, \beta, \gamma \). By Vieta's formulas, we know: - \( \alpha + \beta + \gamma = -a \)
- \( \alpha\beta + \beta\gamma + \gamma\alpha = b \)
- \( \alpha\beta\gamma = -c \)
Step 1: We need to find the value of \( \alpha^{-1} + \beta^{-1} + \gamma^{-1} \). Using the identity: \( \alpha^{-1} + \beta^{-1} + \gamma^{-1} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} \)
Step 2: Substitute the values from Vieta’s formulas: \( \alpha^{-1} + \beta^{-1} + \gamma^{-1} = \frac{b}{-c} = \frac{-b}{c} \)
Let \( M \) be a \( 7 \times 7 \) matrix with entries in \( \mathbb{R} \) and having the characteristic polynomial \[ c_M(x) = (x - 1)^\alpha (x - 2)^\beta (x - 3)^2, \] where \( \alpha>\beta \). Let \( {rank}(M - I_7) = {rank}(M - 2I_7) = {rank}(M - 3I_7) = 5 \), where \( I_7 \) is the \( 7 \times 7 \) identity matrix.
If \( m_M(x) \) is the minimal polynomial of \( M \), then \( m_M(5) \) is equal to __________ (in integer).
In the given figure, graph of polynomial \(p(x)\) is shown. Number of zeroes of \(p(x)\) is

Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))