We are given the cubic equation \( x^3 + ax^2 + bx + c = 0 \) with roots \( \alpha, \beta, \gamma \). By Vieta's formulas, we know: - \( \alpha + \beta + \gamma = -a \)
- \( \alpha\beta + \beta\gamma + \gamma\alpha = b \)
- \( \alpha\beta\gamma = -c \)
Step 1: We need to find the value of \( \alpha^{-1} + \beta^{-1} + \gamma^{-1} \). Using the identity: \( \alpha^{-1} + \beta^{-1} + \gamma^{-1} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} \)
Step 2: Substitute the values from Vieta’s formulas: \( \alpha^{-1} + \beta^{-1} + \gamma^{-1} = \frac{b}{-c} = \frac{-b}{c} \)