Step 1: Understanding the problem:
We are given the quadratic polynomial \( f(x) = 6x^2 + 11x - 10 \), and we are asked to find the value of \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \), where \( \alpha \) and \( \beta \) are the zeroes of the polynomial.
Step 2: Use Vieta's formulas:
From Vieta's formulas for the quadratic equation \( ax^2 + bx + c = 0 \), we know the following relationships between the zeroes \( \alpha \) and \( \beta \):
- The sum of the zeroes is \( \alpha + \beta = -\frac{b}{a} \)
- The product of the zeroes is \( \alpha \beta = \frac{c}{a} \)
For the given polynomial \( f(x) = 6x^2 + 11x - 10 \), we have:
- \( a = 6 \)
- \( b = 11 \)
- \( c = -10 \)
So, according to Vieta's formulas:
- \( \alpha + \beta = -\frac{11}{6} \)
- \( \alpha \beta = \frac{-10}{6} = -\frac{5}{3} \)
We are tasked with finding \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \). Using the identity:
\[
\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha \beta}
\]
we need to find \( \alpha^2 + \beta^2 \).
Step 3: Find \( \alpha^2 + \beta^2 \):
We use the identity:
\[
\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta
\]
Substitute the values \( \alpha + \beta = -\frac{11}{6} \) and \( \alpha \beta = -\frac{5}{3} \):
\[
\alpha^2 + \beta^2 = \left( -\frac{11}{6} \right)^2 - 2 \times \left( -\frac{5}{3} \right)
\]
\[
\alpha^2 + \beta^2 = \frac{121}{36} + \frac{10}{3}
\]
Convert \( \frac{10}{3} \) to a fraction with denominator 36:
\[
\frac{10}{3} = \frac{120}{36}
\]
Now add the two fractions:
\[
\alpha^2 + \beta^2 = \frac{121}{36} + \frac{120}{36} = \frac{241}{36}
\]
Step 4: Calculate \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \):
Now, substitute \( \alpha^2 + \beta^2 = \frac{241}{36} \) and \( \alpha \beta = -\frac{5}{3} \) into the formula:
\[
\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{\frac{241}{36}}{-\frac{5}{3}}
\]
Simplify the division of fractions:
\[
\frac{\frac{241}{36}}{-\frac{5}{3}} = \frac{241}{36} \times \frac{3}{-5} = \frac{241 \times 3}{36 \times -5} = \frac{723}{-180}
\]
Simplify the fraction:
\[
\frac{723}{-180} = -\frac{241}{60}
\]
Conclusion:
The value of \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \) is \( -\frac{241}{60} \).