Step 1: Recall the relationships. For a quadratic polynomial f(x)=ax2+bx+c, the zeroes α and β satisfy:
α+β=−ab,αβ=ac.
Here:
a=6,b=11,c=−10⟹α+β=−611,αβ=−610.
Step 2: Simplify the expression:
βα+αβ=αβα2+β2.
Use α2+β2=(α+β)2−2αβ:
α2+β2=(−611)2−2(−610)=36121+620.
Simplify:
α2+β2=36121+36120=36241.
Substitute into βα+αβ:
βα+αβ=−61036241=60241.
Correct Answer: 60241.