Question:

If α\alpha and β\beta are the zeroes of the quadratic polynomial f(x)=6x2+11x10f(x) = 6x^2 + 11x - 10, find the value of αβ+βα\frac{\alpha}{\beta} + \frac{\beta}{\alpha}.

Updated On: Dec 12, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Recall the relationships. For a quadratic polynomial f(x)=ax2+bx+cf(x) = ax^2 + bx + c, the zeroes α\alpha and β\beta satisfy:
α+β=ba,αβ=ca.\alpha + \beta = -\frac{b}{a}, \quad \alpha \beta = \frac{c}{a}.
Here:
a=6,b=11,c=10    α+β=116,αβ=106.a = 6, \, b = 11, \, c = -10 \implies \alpha + \beta = -\frac{11}{6}, \, \alpha \beta = -\frac{10}{6}.
Step 2: Simplify the expression:
αβ+βα=α2+β2αβ.\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha \beta}.
Use α2+β2=(α+β)22αβ\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta:
α2+β2=(116)22(106)=12136+206.\alpha^2 + \beta^2 = \left(-\frac{11}{6}\right)^2 - 2\left(-\frac{10}{6}\right) = \frac{121}{36} + \frac{20}{6}.
Simplify:
α2+β2=12136+12036=24136.\alpha^2 + \beta^2 = \frac{121}{36} + \frac{120}{36} = \frac{241}{36}.
Substitute into αβ+βα\frac{\alpha}{\beta} + \frac{\beta}{\alpha}:
αβ+βα=24136106=24160.\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\frac{241}{36}}{-\frac{10}{6}} = \frac{241}{60}.
Correct Answer: 24160\frac{241}{60}.

Was this answer helpful?
0
0

Top Questions on Quadratic Equations

View More Questions