Given:
\[
a(u + x^2) = x \quad \text{(1)}
\]
\[
y - x^3 = a^2 \quad \Rightarrow \quad y = a^2 + x^3 \quad \text{(2)}
\]
From (1), solve for \( a \):
\[
a = \frac{x}{u + x^2}
\]
Now substitute \( a^2 \) into (2):
\[
y = \left( \frac{x}{u + x^2} \right)^2 + x^3
\]
Differentiate \( y \) with respect to \( x \):
\[
\frac{dy}{dx} = \frac{d}{dx} \left( \left( \frac{x}{u + x^2} \right)^2 \right) + \frac{d}{dx}(x^3)
\]
Let \( f(x) = \left( \frac{x}{u + x^2} \right)^2 \). Using the chain rule:
\[
\frac{d}{dx} f(x) = 2 \cdot \frac{x}{u + x^2} \cdot \frac{d}{dx} \left( \frac{x}{u + x^2} \right)
\]
Let:
\[
\frac{d}{dx} \left( \frac{x}{u + x^2} \right) = \frac{(u + x^2)(1) - x(2x)}{(u + x^2)^2} = \frac{u + x^2 - 2x^2}{(u + x^2)^2} = \frac{u - x^2}{(u + x^2)^2}
\]
Now plug back into derivative:
\[
\frac{dy}{dx} = 2 \cdot \frac{x}{u + x^2} \cdot \frac{u - x^2}{(u + x^2)^2} + 3x^2
\]
At \( x = 1 \), from (1):
\[
a(u + 1) = 1 \Rightarrow a = \frac{1}{u + 1}
\Rightarrow a^2 = \frac{1}{(u + 1)^2}
\]
Substitute into final derivative expression to compute value at \( x = 1 \).