We are given:
\[
\int \log((2 + x)^{2 + x}) \, dx
\]
Using the logarithmic identity:
\[
\log(a^b) = b \log a
\]
So:
\[
\log((2 + x)^{2 + x}) = (2 + x) \log(2 + x)
\]
Now integrate:
\[
\int (2 + x) \log(2 + x) \, dx
\]
Let us take substitution:
Let \( t = 2 + x \Rightarrow dt = dx \)
The integral becomes:
\[
\int t \log t \, dt
\]
Use integration by parts:
Let \( u = \log t, \ dv = t \, dt \)
Then \( du = \frac{1}{t} \, dt, \ v = \frac{t^2}{2} \)
Now apply:
\[
\int t \log t \, dt = \frac{t^2}{2} \log t - \int \frac{t^2}{2} \cdot \frac{1}{t} \, dt
= \frac{t^2}{2} \log t - \int \frac{t}{2} \, dt
= \frac{t^2}{2} \log t - \frac{t^2}{4} + C
\]
Substitute \( t = 2 + x \) back:
\[
\int \log((2 + x)^{2 + x}) \, dx = \frac{(2 + x)^2}{2} \log(2 + x) - \frac{(2 + x)^2}{4} + C
\]
\[
(2 + x)(2 + x)^x (\log(2 + x) + 1) + C
\]