Step 1: Understand the problem
Point \(R(4, y, z)\) lies on the line joining points \(P(2, -3, 4)\) and \(Q(8, 0, 10)\). We need to find the distance of \(R\) from the origin.
Step 2: Parametric form of line PQ
The line joining \(P\) and \(Q\) can be written as:
\[
(x, y, z) = (2, -3, 4) + t(8 - 2, 0 + 3, 10 - 4) = (2, -3, 4) + t(6, 3, 6)
\]
So,
\[
x = 2 + 6t, \quad y = -3 + 3t, \quad z = 4 + 6t
\]
Step 3: Find parameter \(t\) for \(x = 4\)
Given \(x = 4\), substitute:
\[
4 = 2 + 6t \implies 6t = 2 \implies t = \frac{1}{3}
\]
Step 4: Find corresponding \(y\) and \(z\)
\[
y = -3 + 3\left(\frac{1}{3}\right) = -3 + 1 = -2
\]
\[
z = 4 + 6\left(\frac{1}{3}\right) = 4 + 2 = 6
\]
Step 5: Coordinates of \(R\)
\[
R = (4, -2, 6)
\]
Step 6: Calculate distance of \(R\) from origin
\[
\text{Distance} = \sqrt{4^2 + (-2)^2 + 6^2} = \sqrt{16 + 4 + 36} = \sqrt{56} = 2\sqrt{14}
\]
Final answer:
\[
2\sqrt{14}
\]