If a point P moves so that the distance from (0,2) to P is \(\frac{1}{√2 }\) times the distance of P from (-1,0), then the locus of the point P is
a circle with centre (1, 4) and radius 10 units
a circle with centre (-1, -4) and radius √10 units
A circle with centre (1, 4) and radius √10 units
a parabola with focus at (1,4) and length of latus rectum 10 units
The correct option is: (C) A circle with centre (1, 4) and radius √10 units
Let \( F \) and \( F' \) be the foci of the ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) (where \( b<2 \)), and let \( B \) be one end of the minor axis. If the area of the triangle \( FBF' \) is \( \sqrt{3} \) sq. units, then the eccentricity of the ellipse is:
A common tangent to the circle \( x^2 + y^2 = 9 \) and the parabola \( y^2 = 8x \) is
If the equation of the circle passing through the points of intersection of the circles \[ x^2 - 2x + y^2 - 4y - 4 = 0, \quad x^2 + y^2 + 4y - 4 = 0 \] and the point \( (3,3) \) is given by \[ x^2 + y^2 + \alpha x + \beta y + \gamma = 0, \] then \( 3(\alpha + \beta + \gamma) \) is: