Step 1: Use the direction cosine property.
The angles \( \alpha, \beta, \gamma \) made by a line with the positive directions of the \( x \)-, \( y \)-, and \( z \)-axes satisfy the equation for direction cosines:
\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.
\]
Here:
\[
\alpha = 30^\circ, \quad \beta = 120^\circ, \quad \gamma = ?.
\]
Step 2: Compute \( \cos \alpha \) and \( \cos \beta \).
\[
\cos \alpha = \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \cos \beta = \cos 120^\circ = -\frac{1}{2}.
\]
Thus:
\[
\cos^2 \alpha = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}, \quad \cos^2 \beta = \left(-\frac{1}{2}\right)^2 = \frac{1}{4}.
\]
Step 3: Solve for \( \cos^2 \gamma \).
Using the equation for direction cosines:
\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1,
\]
\[
\frac{3}{4} + \frac{1}{4} + \cos^2 \gamma = 1 \quad \Rightarrow \quad \cos^2 \gamma = 1 - \left(\frac{3}{4} + \frac{1}{4}\right).
\]
Simplify:
\[
\cos^2 \gamma = 1 - 1 = 0.
\]
Step 4: Determine \( \gamma \).
If \( \cos^2 \gamma = 0 \), then:
\[
\cos \gamma = 0.
\]
The angle \( \gamma \) corresponding to \( \cos \gamma = 0 \) is:
\[
\gamma = 90^\circ.
\]
Step 5: Conclusion.
The angle which the line makes with the positive direction of the \( z \)-axis is:
\[
\boxed{90^\circ}.
\]