If A is an invertible matrix of order 2,then det(A-1) is equal to
det
\(\frac{1}{det(A)}\)
1
0
Since A is an invertible matrix,A-1 exists and A-1=\(\frac{1}{\mid A\mid} adj A.\)
As matrix A is of order 2,let A=\(\begin{bmatrix}a&b\\c&d\end{bmatrix}\).
Then, IAI=ad-bc and adjA=\(\begin{bmatrix}d&-b\\-c&a\end{bmatrix}\).
Now,A-1=\(\frac{1}{\mid A\mid} adj A\)=\(\begin{bmatrix}\frac{d}{\mid A\mid}&\frac{-b}{\mid A \mid}\\ \frac{-c}{\mid A \mid}&\frac{a}{\mid A\mid}\end{bmatrix}\).
therefore IA-1I=\(\begin{vmatrix}\frac{d}{\mid A\mid}&\frac{-b}{\mid A \mid}\\ \frac{-c}{\mid A \mid}&\frac{a}{\mid A\mid}\end{vmatrix}\)
=\(\frac{1}{\mid A \mid^2}\begin{bmatrix}d&-b\\-c&a\end{bmatrix}\)
=\(\frac{1}{\mid A \mid^2}(ad-bc)=\frac{1}{\mid A \mid^2}.\mid A \mid=\frac{1}{\mid A\mid}\)
\(\therefore\) det(A-1)=\(\frac{1}{det(A)}\)
Hence, the correct answer is B.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]
Balance Sheet of Chandan, Deepak and Elvish as at 31st March, 2024
Liabilities | Amount (₹) | Assets | Amount (₹) |
---|---|---|---|
Capitals: | Fixed Assets | 27,00,000 | |
Chandan | 7,00,000 | Stock | 3,00,000 |
Deepak | 5,00,000 | Debtors | 2,00,000 |
Elvish | 3,00,000 | Cash | 1,00,000 |
General Reserve | 4,50,000 | ||
Creditors | 13,50,000 | ||
Total | 33,00,000 | Total | 33,00,000 |