If A is an invertible matrix of order 2,then det(A-1) is equal to
det
\(\frac{1}{det(A)}\)
1
0
Since A is an invertible matrix,A-1 exists and A-1=\(\frac{1}{\mid A\mid} adj A.\)
As matrix A is of order 2,let A=\(\begin{bmatrix}a&b\\c&d\end{bmatrix}\).
Then, IAI=ad-bc and adjA=\(\begin{bmatrix}d&-b\\-c&a\end{bmatrix}\).
Now,A-1=\(\frac{1}{\mid A\mid} adj A\)=\(\begin{bmatrix}\frac{d}{\mid A\mid}&\frac{-b}{\mid A \mid}\\ \frac{-c}{\mid A \mid}&\frac{a}{\mid A\mid}\end{bmatrix}\).
therefore IA-1I=\(\begin{vmatrix}\frac{d}{\mid A\mid}&\frac{-b}{\mid A \mid}\\ \frac{-c}{\mid A \mid}&\frac{a}{\mid A\mid}\end{vmatrix}\)
=\(\frac{1}{\mid A \mid^2}\begin{bmatrix}d&-b\\-c&a\end{bmatrix}\)
=\(\frac{1}{\mid A \mid^2}(ad-bc)=\frac{1}{\mid A \mid^2}.\mid A \mid=\frac{1}{\mid A\mid}\)
\(\therefore\) det(A-1)=\(\frac{1}{det(A)}\)
Hence, the correct answer is B.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
मोबाइल फोन विहीन दुनिया — 120 शब्दों में रचनात्मक लेख लिखिए :