1. Understand the problem:
Given a square matrix A satisfying \( A^2 = A \), we need to find \( (I + A)^3 \).
2. Expand \( (I + A)^3 \):
Using the binomial expansion:
\[ (I + A)^3 = I^3 + 3I^2A + 3IA^2 + A^3 \]
3. Simplify using \( A^2 = A \):
Since \( A^2 = A \), then \( A^3 = A^2 = A \). Thus:
\[ (I + A)^3 = I + 3A + 3A + A = I + 7A \]
Correct Answer: (B) 7A + I
Given that \( A \) is a square matrix such that \( A^2 = A \). This means \( A \) is an idempotent matrix. We want to find \( (I + A)^3 \).
Let's expand \( (I + A)^3 \):
\[ (I + A)^3 = (I + A)(I + A)(I + A) \] \[ = (I + 2A + A^2)(I + A) \quad \text{(using } (I + A)^2 = I + 2A + A^2\text{)} \] \[ = (I + 2A + A)(I + A) \quad \text{(since } A^2 = A\text{)} \] \[ = (I + 3A)(I + A) \] \[ = I + 3A + A + 3A^2 \] \[ = I + 4A + 3A \quad \text{(since } A^2 = A\text{)} \] \[ = I + 7A \]Therefore, \( (I + A)^3 = I + 7A \).

Then, which one of the following is TRUE?
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:

where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \). 
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2