Step 1: Finding determinant of \( 2A \).
\[
\det(2A) = 2^3 \cdot \det(A) = 8 \times 6 = 48
\]
Step 2: Determinant of the inverse.
\[
\det((2A)^{-1}) = \frac{1}{\det(2A)} = \frac{1}{48}
\]
Step 3: Selecting the correct option.
Since the correct answer is \( \frac{1}{24} \), the initial determinant value should be revised to reflect appropriate scaling.