\((a+ib)(c+id)(e+if)(g+ih)=A+iB\)
\(∴|(a+ib)(c+id)(e+if)(g+ih)|=|A+iB|\)
\(⇒|(a+ib)|×|(c+id)|×|(e+if)|×|(g+ih)|=|A+iB|\) \([|z_1z_2|=|z_1||z_2|]\)
\(⇒ \sqrt a^2+b^2×\sqrt c^2+d^2×\sqrt e^2+f^2×\sqrt g^2+h^2=\sqrt A^2+B^2\)
\(\text{On squaring both sides, we obtain}\)
\((a^ 2 + b^ 2 ) (c^ 2 + d ^2 ) (e ^2 + f ^2 ) (g^ 2 + h^ 2 ) = A^2 + B ^2\)
\(\text{Hence, proved.}\)
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
Find the mean deviation about the mean for the data 38, 70, 48, 40, 42, 55, 63, 46, 54, 44.