\((a+ib)(c+id)(e+if)(g+ih)=A+iB\)
\(∴|(a+ib)(c+id)(e+if)(g+ih)|=|A+iB|\)
\(⇒|(a+ib)|×|(c+id)|×|(e+if)|×|(g+ih)|=|A+iB|\) \([|z_1z_2|=|z_1||z_2|]\)
\(⇒ \sqrt a^2+b^2×\sqrt c^2+d^2×\sqrt e^2+f^2×\sqrt g^2+h^2=\sqrt A^2+B^2\)
\(\text{On squaring both sides, we obtain}\)
\((a^ 2 + b^ 2 ) (c^ 2 + d ^2 ) (e ^2 + f ^2 ) (g^ 2 + h^ 2 ) = A^2 + B ^2\)
\(\text{Hence, proved.}\)
Let α,β be the roots of the equation, ax2+bx+c=0.a,b,c are real and sn=αn+βn and \(\begin{vmatrix}3 &1+s_1 &1+s_2\\1+s_1&1+s_2 &1+s_3\\1+s_2&1+s_3 &1+s_4\end{vmatrix}=\frac{k(a+b+c)^2}{a^4}\) then k=
Figures 9.20(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?