Step 1: Write the characteristic equation.
The differential equation is: \[ \frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0 \] Characteristic equation: \[ r^2 + 5r + 6 = 0 $\Rightarrow$ (r + 2)(r + 3) = 0 \] \[ r = -2, -3 \]
Step 2: General solution.
\[ y(x) = A e^{-2x} + B e^{-3x} \]
Step 3: Apply initial conditions.
For \(x = 0,\ y(0) = 2:\) \[ A + B = 2 (1) \] Derivative: \[ \frac{dy}{dx} = -2A e^{-2x} - 3B e^{-3x} \] At \(x=0,\ \frac{dy}{dx} = 0:\) \[ -2A - 3B = 0 \Rightarrow 2A + 3B = 0 (2) \] Solving (1) and (2): Multiply (1) by 2 → \(2A + 2B = 4\) Subtract from (2): \[ (2A + 3B) - (2A + 2B) = 0 - 4 \Rightarrow B = -4 \] Substitute in (1): \[ A - 4 = 2 \Rightarrow A = 6 \]
Step 4: Substitute constants.
\[ y(x) = 6 e^{-2x} - 4 e^{-3x} \] At \(x = 1:\) \[ y(1) = 6 e^{-2} - 4 e^{-3} = 6(0.1353) - 4(0.0498) = 0.8118 - 0.1992 = 0.6126 \] Rounded to two decimals: \(y(1) = 0.61\).
Step 5: Conclusion.
Hence, \(y(1) = 0.61\).
