If a function \( f(x) \) is defined as: \[ f(x) = \begin{cases} \frac{\tan(4x) + \tan 2x}{x} & \text{if } x>0 \beta & \text{if } x = 0 \frac{\sin 3x - \tan 3x}{x^2} & \text{if } x<0 \end{cases} \] and is continuous at \( x = 0 \), then find \( |\alpha| + |\beta| \).
Step 1: Apply the Continuity Condition at \( x = 0 \)
For \( f(x) \) to be continuous at \( x = 0 \), we must have: \[ \lim_{x \to 0} f(x) = f(0) = \beta. \] Thus, we evaluate the left-hand limit and right-hand limit separately.
Step 2: Evaluate Right-Hand Limit (RHL)
\[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0} \frac{\tan(4x) + \tan 2x}{x}. \] Using the approximations \( \tan x \approx x \) for small \( x \), we get: \[ \lim_{x \to 0} \frac{4x + 2x}{x} = \lim_{x \to 0} \frac{6x}{x} = 6. \] So, \( \alpha = 6 \).
Step 3: Evaluate Left-Hand Limit (LHL)
\[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0} \frac{\sin 3x - \tan 3x}{x^2}. \] Using approximations \( \sin x \approx x \) and \( \tan x \approx x \) for small \( x \), we get: \[ \lim_{x \to 0} \frac{3x - 3x}{x^2} = 0. \] So, \( \beta = 0 \).
Step 4: Compute \( |\alpha| + |\beta| \)
\[ |\alpha| + |\beta| = |6| + |0| = 6. \]
Final Answer: \( \boxed{30} \).