We apply the sum-to-product identities to the given trigonometric expression:
\[
\cos A + \cos 7A = 2 \cos 4A \cos 3A, \quad \cos 3A + \cos 5A = 2 \cos 4A \cos A
\]
\[
\sin A + \sin 7A = 2 \sin 4A \cos 3A, \quad \sin 3A + \sin 5A = 2 \sin 4A \cos A
\]
The expression simplifies to:
\[
\frac{2 \cos 4A (2 \cos 2A \cos A)}{2 \sin 4A (2 \cos 2A \cos A)} = \frac{\cos 4A}{\sin 4A} = \cot 4A
\]
Since \( 4A = \frac{\pi}{6} \), we have:
\[
\cot \left( \frac{\pi}{6} \right) = \sqrt{3}
\]
Thus, the answer is \( \sqrt{3} \), option (1).