The compound interest formula is:
\[ A = P \left(1 + \frac{r}{100} \right)^t \]
The amount quadruples in 15 years, so:
\[ 4P = P \left(1 + \frac{r}{100} \right)^{15} \]
Dividing both sides by \( P \):
\[ 4 = \left(1 + \frac{r}{100} \right)^{15} \]
We need to find the time \( t \) when the amount becomes 16 times, i.e.:
\[ 16P = P \left(1 + \frac{r}{100} \right)^t \]
Dividing both sides by \( P \):
\[ 16 = \left(1 + \frac{r}{100} \right)^t \]
Since we know that \( 16 = 4^2 \), we can rewrite it as:
\[ \left(1 + \frac{r}{100} \right)^t = \left( \left(1 + \frac{r}{100} \right)^{15} \right)^2 \]
Thus, equating the exponents:
\[ t = 2 \times 15 = 30 \text{ years} \]
Thus, the correct answer is 30 years (Option A).