If A=\(\begin{bmatrix}3&1\\-1&2\end{bmatrix}\),show that A2-5A+7I=0.Hence find A-1.
Given A=\(\begin{bmatrix}3&1\\-1&2\end{bmatrix}\)
A2=A.A =\(\begin{bmatrix}3&1\\-1&2\end{bmatrix}\)\(\begin{bmatrix}3&1\\-1&2\end{bmatrix}\) =\(\begin{bmatrix}9-1&3+2\\-3-2&-1+4\end{bmatrix}\)=\(\begin{bmatrix}8&5\\-5&3\end{bmatrix}\)
therefore LHS=A2-5A+7I
\(\Rightarrow\begin{bmatrix}8&5\\-5&3\end{bmatrix}\)-5\(\begin{bmatrix}3&1\\-1&2\end{bmatrix}\)+7\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)
=\(\begin{bmatrix}8&5\\-5&3\end{bmatrix}\)-\(\begin{bmatrix}15&5\\-5&10\end{bmatrix}\)+\(\begin{bmatrix}7&0\\0&7\end{bmatrix}\)
=\(\begin{bmatrix}-7&0\\0&-7\end{bmatrix}\)+\(\begin{bmatrix}7&0\\0&7\end{bmatrix}\) =0
=RHS
So A2-5A+7I=0
therefore A. A-5A=-7I
\(\Rightarrow\) A. A(A-1)-5A(A-1)=-7I(A-1) [post multiplying by A-1 as IAI≠0]
\(\Rightarrow\) A(AA-1)-5I=-7I(A-1)
\(\Rightarrow\) AI-5I=-7A-1
\(\Rightarrow\) A-1=-\(\frac{1}{7}\)(A-5I)
\(\Rightarrow\) A-1=\(\frac{1}{7}\)(5I-A)
=\(\frac{41}{7}\) \(\bigg(\)\(\begin{bmatrix}5&0\\0&5\end{bmatrix}\)-\(\begin{bmatrix}3&1\\-1&2\end{bmatrix}\)\(\bigg)\)=\(\frac{1}{7}\begin{bmatrix}2&-1\\1&3\end{bmatrix}\)
\(\therefore\) A-1=\(\frac{1}{7}\begin{bmatrix}2&-1\\1&3\end{bmatrix}\)
Balance Sheet of Atharv and Anmol as at 31st March, 2024
Liabilities | Amount (₹) | Assets | Amount (₹) |
---|---|---|---|
Capitals: | Fixed Assets | 14,00,000 | |
Atharv | 8,00,000 | Stock | 4,90,000 |
Anmol | 4,00,000 | Debtors | 5,60,000 |
General Reserve | 3,50,000 | Cash | 10,000 |
Creditors | 9,10,000 | ||
Total | 24,60,000 | Total | 24,60,000 |
Column-I | Column-II |
---|---|
(a) Non-tax Revenue | (ii) Free-rider |
(b) Indirect Tax | (i) Goods and Services Tax |
(c) Capital expenditure | (iii) Borrowings |
(d) Private goods | (iv) Rivalrous in nature |