If A=\(\begin{bmatrix}3&1\\-1&2\end{bmatrix}\),show that A2-5A+7I=0.Hence find A-1.
Given A=\(\begin{bmatrix}3&1\\-1&2\end{bmatrix}\)
A2=A.A =\(\begin{bmatrix}3&1\\-1&2\end{bmatrix}\)\(\begin{bmatrix}3&1\\-1&2\end{bmatrix}\) =\(\begin{bmatrix}9-1&3+2\\-3-2&-1+4\end{bmatrix}\)=\(\begin{bmatrix}8&5\\-5&3\end{bmatrix}\)
therefore LHS=A2-5A+7I
\(\Rightarrow\begin{bmatrix}8&5\\-5&3\end{bmatrix}\)-5\(\begin{bmatrix}3&1\\-1&2\end{bmatrix}\)+7\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)
=\(\begin{bmatrix}8&5\\-5&3\end{bmatrix}\)-\(\begin{bmatrix}15&5\\-5&10\end{bmatrix}\)+\(\begin{bmatrix}7&0\\0&7\end{bmatrix}\)
=\(\begin{bmatrix}-7&0\\0&-7\end{bmatrix}\)+\(\begin{bmatrix}7&0\\0&7\end{bmatrix}\) =0
=RHS
So A2-5A+7I=0
therefore A. A-5A=-7I
\(\Rightarrow\) A. A(A-1)-5A(A-1)=-7I(A-1) [post multiplying by A-1 as IAI≠0]
\(\Rightarrow\) A(AA-1)-5I=-7I(A-1)
\(\Rightarrow\) AI-5I=-7A-1
\(\Rightarrow\) A-1=-\(\frac{1}{7}\)(A-5I)
\(\Rightarrow\) A-1=\(\frac{1}{7}\)(5I-A)
=\(\frac{41}{7}\) \(\bigg(\)\(\begin{bmatrix}5&0\\0&5\end{bmatrix}\)-\(\begin{bmatrix}3&1\\-1&2\end{bmatrix}\)\(\bigg)\)=\(\frac{1}{7}\begin{bmatrix}2&-1\\1&3\end{bmatrix}\)
\(\therefore\) A-1=\(\frac{1}{7}\begin{bmatrix}2&-1\\1&3\end{bmatrix}\)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______