Let $D = \begin{bmatrix}a&b\\ c&d\\ e&f\end{bmatrix}$
$\therefore A + B - C = \begin{bmatrix}1&3\\ 3&2\\ 2&5\end{bmatrix}+ \begin{bmatrix}-1&-2\\ 0&5\\ 3&1\end{bmatrix} - \begin{bmatrix}a&b\\ c&d\\ e&f\end{bmatrix}$
$\Rightarrow \begin{bmatrix}1-1-a&3-2-b\\ 3+0-c&2+5-d\\ 2+3-e&5+1-f\end{bmatrix} =\begin{bmatrix}0&0\\ 0&0\\ 0&0\end{bmatrix}$
$-a=0 \Rightarrow a=0,1-b=0$
$\Rightarrow b=1$
$3-c=0 \Rightarrow c=3,7-d=0$
$\Rightarrow d=7$,
$5-e=0 \Rightarrow e=5,6-f=0$
$\Rightarrow f=6$,
$\therefore D = \begin{bmatrix}0&1\\ 3&7\\ 5&6\end{bmatrix}$