The correct answer is: (B) \( \cos^2 \left(\frac{\alpha}{2}\right) A^T \).
We are given that:
\( A = \begin{bmatrix} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{bmatrix} \)
and \( AB = I \), where \( I \) is the identity matrix.
We need to find matrix \( B \).
Step 1: Use the condition \( AB = I \)
The condition \( AB = I \) tells us that matrix \( B \) is the inverse of matrix \( A \). Therefore, \( B = A^{-1} \).
Step 2: Find the inverse of matrix \( A \)
The inverse of a 2x2 matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by:
\[
A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
\]
For matrix \( A \), we have:
\[
a = 1, \, b = \tan \frac{\alpha}{2}, \, c = -\tan \frac{\alpha}{2}, \, d = 1
\]
The determinant of \( A \) is:
\[
\text{det}(A) = 1 \cdot 1 - (-\tan \frac{\alpha}{2}) \cdot \tan \frac{\alpha}{2} = 1 + \tan^2 \frac{\alpha}{2}
\]
Using the trigonometric identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we get:
\[
\text{det}(A) = \sec^2 \frac{\alpha}{2}
\]
Therefore, the inverse of \( A \) is:
\[
A^{-1} = \frac{1}{\sec^2 \frac{\alpha}{2}} \begin{bmatrix} 1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1 \end{bmatrix}
\]
Simplifying further:
\[
A^{-1} = \cos^2 \frac{\alpha}{2} \begin{bmatrix} 1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1 \end{bmatrix}
\]
The inverse of \( A \) is \( B = \cos^2 \frac{\alpha}{2} A^T \), where \( A^T \) is the transpose of matrix \( A \).
Thus, the correct answer is
(B) \( \cos^2 \left(\frac{\alpha}{2}\right) A^T \).