First, let's calculate the product \( AB \): \[ A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{pmatrix} \] The product of two matrices \( AB \) is calculated as follows: \[ AB = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{pmatrix} \] Now, we multiply the rows of \( A \) with the columns of \( B \): - First row, first column: \( 1 \times 2 + (-2) \times 3 + 1 \times 1 = 2 - 6 + 1 = -3 \)
First row, second column: \( 1 \times 1 + (-2) \times 2 + 1 \times 1 = 1 - 4 + 1 = -2 \)
Second row, first column: \( 2 \times 2 + 1 \times 3 + 3 \times 1 = 4 + 3 + 3 = 10 \)
Second row, second column: \( 2 \times 1 + 1 \times 2 + 3 \times 1 = 2 + 2 + 3 = 7 \)
Therefore, \( AB = \begin{pmatrix} -3 & -2 \\ 10 & 7 \end{pmatrix} \).
Now, we need to find \( (AB)^\prime \), which is the transpose of \( AB \).
The transpose of a matrix is obtained by switching its rows and columns: \[ (AB)^\prime = \begin{pmatrix} -3 & 10 \\ -2 & 7 \end{pmatrix} \]
Thus, the correct answer is \( \begin{pmatrix} -3 & 10 \\ -2 & 7 \end{pmatrix} \), which corresponds to option (B).
Given matrices \(A=\begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix}\) and \(B=\begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix}\).
We need to find \((AB)'\).
First, let's calculate \(AB\):
\(AB = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} (1)(2) + (-2)(3) + (1)(1) & (1)(1) + (-2)(2) + (1)(1) \\ (2)(2) + (1)(3) + (3)(1) & (2)(1) + (1)(2) + (3)(1) \end{bmatrix}\)
\(AB = \begin{bmatrix} 2 - 6 + 1 & 1 - 4 + 1 \\ 4 + 3 + 3 & 2 + 2 + 3 \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ 10 & 7 \end{bmatrix}\)
Now, let's find the transpose of \(AB\), which is \((AB)'\):
\((AB)' = \begin{bmatrix} -3 & -2 \\ 10 & 7 \end{bmatrix}' = \begin{bmatrix} -3 & 10 \\ -2 & 7 \end{bmatrix}\)
Therefore, \((AB)' = \begin{bmatrix} -3 & 10 \\ -2 & 7 \end{bmatrix}\).
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: