Question:

If $A= \begin{bmatrix}1&2\\ 0&1\end{bmatrix} $, then $A^n$ is

Updated On: May 11, 2024
  • $\begin{bmatrix}1&2^n - 2\\ 0&1\end{bmatrix} $
  • $\begin{bmatrix}1&n^2 \\ 0&1\end{bmatrix} $
  • $\begin{bmatrix}1&2n \\ 0&1\end{bmatrix} $
  • $\begin{bmatrix}1&n^2 \\ 1 &1\end{bmatrix} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

$A^{2} = A.A = \begin{bmatrix}1&2\\ 0&1\end{bmatrix} \begin{bmatrix}1&2\\ 0&1\end{bmatrix} = \begin{bmatrix}1&4\\ 0&1\end{bmatrix} =\begin{bmatrix}1&2\times2\\ 0&1\end{bmatrix} $
$ A^{3} =A^{2} .A = \begin{bmatrix}1&4\\ 0&1\end{bmatrix} \begin{bmatrix}1&2\\ 0&1\end{bmatrix} =\begin{bmatrix}1&6\\ 0&1\end{bmatrix}=\begin{bmatrix}1&3\times2\\ 0&1\end{bmatrix} $
Similarly $ A^{4} = A^{3} .A = \begin{bmatrix}1&8\\ 0&1\end{bmatrix}=\begin{bmatrix}1&4\times2\\ 0&1\end{bmatrix}$
$ \Rightarrow A^{n} = A^{n-1} A =\begin{bmatrix}1&n\times2\\ 0&1\end{bmatrix}$
$ \therefore \ \ A^{n} = \begin{bmatrix}1&2n\\ 0&1\end{bmatrix}$
Was this answer helpful?
0
0

Concepts Used:

Matrices

Matrix:

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.

The basic operations that can be performed on matrices are:

  1. Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
  2. Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
  3. Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication. 
  4. Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal. 
  5. Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.