Question:

If \(A=\begin{bmatrix}1&1&1\\ 1&1&1\\ 1&1&1\end{bmatrix}\),Prove that \(A^n=\begin{bmatrix}3^{n-1}& 3^{n-1}& 3^{n-1}\\ 3^{n-1}& 3^{n-1}& 3^{n-1}\\ 3^{n-1}& 3^{n-1}& 3^{n-1}\end{bmatrix},n∈N\)

Updated On: Sep 7, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

It is given that \(A=\begin{bmatrix}1&1&1\\ 1&1&1\\ 1&1&1\end{bmatrix}\)
To show \(P(n):A^n=\begin{bmatrix}3^{n-1}& 3^{n-1}& 3^{n-1}\\ 3^{n-1}& 3^{n-1}& 3^{n-1}\\ 3^{n-1}& 3^{n-1}& 3^{n-1}\end{bmatrix}\)
We shall prove the result by using the principle of mathematical induction.
For n = 1, we have:
\(P(1)=\begin{bmatrix}3^{1-1}& 3^{1-1}& 3^{1-1}\\ 3^{1-1}& 3^{1-1}& 3^{1-1}\\ 3^{1-1}& 3^{1-1}& 3^{1-1}\end{bmatrix}\)
\(A^n=\begin{bmatrix}3^0& 3^0& 3^0\\ 3^0& 3^0& 3^0\\ 3^0& 3^0& 3^0\end{bmatrix}\)
\(A=\begin{bmatrix}1&1&1\\ 1&1&1\\ 1&1&1\end{bmatrix}\)
Therefore, the result is true for n = 1.
Let the result be true for n = k.
That is \(P(k)=A^k=\begin{bmatrix}3^{k-1}& 3^{k-1}& 3^{k-1}\\ 3^{k-1}& 3^{k-1}& 3^{k-1}\\ 3^{k-1}& 3^{k-1}& 3^{k-1}\end{bmatrix}\)
Now, we prove that the result is true for n = k + 1.
\(A^{k+1}=A.A^k\)
\(=\begin{bmatrix}1&1&1\\ 1&1&1\\ 1&1&1\end{bmatrix}\begin{bmatrix}3^{k-1}& 3^{k-1}& 3^{k-1}\\ 3^{k-1}& 3^{k-1}& 3^{k-1}\\ 3^{k-1}& 3^{k-1}& 3^{k-1}\end{bmatrix}\)
\(\begin{bmatrix}3.3^{k-1}& 3.3^{k-1}& 3.3^{k-1}\\ 3.3^{k-1}& 3.3^{k-1}& 3.3^{k-1}\\ 3.3^{k-1}& 3.3^{k-1}& 3.3^{k-1}\end{bmatrix}\)
\(\begin{bmatrix}3^{k+1}-1& 3^{k+1}-1& 3^{k+1}-1\\ 3^{k+1}-1& 3^{k+1}-1& 3^{k+1}-1\\ 3^{k+1}-1& 3^{k+1}-1& 3^{k+1}-1\end{bmatrix}\)
Therefore, the result is true for \(n = k + 1.\)
Thus by the principle of mathematical induction, we have:
\(A^n=\begin{bmatrix}3^{n-1}& 3^{n-1}& 3^{n-1}\\ 3^{n-1}& 3^{n-1}& 3^{n-1}\\ 3^{n-1}& 3^{n-1}& 3^{n-1}\end{bmatrix},n∈N\)
Was this answer helpful?
0
0