We are given: \[ A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] Note that: \[ A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0 \] So, since \( A^2 = 0 \), the matrix \( A \) is nilpotent of index 2. Now, expand \( (aI + bA)^n \) using the binomial theorem: \[ (aI + bA)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} (bA)^k \] But since \( A^2 = 0 \), all terms with \( k \geq 2 \) vanish. So, we keep only terms for \( k = 0 \) and \( k = 1 \): \[ (aI + bA)^n = a^n I + n a^{n-1} b A \] Correct answer: \( a^n I + n \cdot a^{n-1} b \cdot A \)
Given A = \(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\) and I = \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\), we want to find (aI + bA)n.
First, note that A2 = \(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\)\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\) = \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\). Therefore Ak = 0 for k ≥ 2.
aI + bA = a\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\) + b\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\) = \(\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}\)
Now, let's examine (aI + bA)n for small values of n:
n = 1: (aI + bA)1 = \(\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}\) = aI + bA
n = 2: (aI + bA)2 = \(\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}\)\(\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}\) = \(\begin{bmatrix} a^2 & 2ab \\ 0 & a^2 \end{bmatrix}\) = a2I + 2abA
n = 3: (aI + bA)3 = (aI + bA)2(aI + bA) = \(\begin{bmatrix} a^2 & 2ab \\ 0 & a^2 \end{bmatrix}\)\(\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}\) = \(\begin{bmatrix} a^3 & a^2b + 2a^2b \\ 0 & a^3 \end{bmatrix}\) = \(\begin{bmatrix} a^3 & 3a^2b \\ 0 & a^3 \end{bmatrix}\) = a3I + 3a2bA
From these examples, we can see a pattern emerging:
(aI + bA)n = anI + n * a(n-1) * b * A
This can be proved through induction as well.
Answer:
\(a^nI + n \cdot a^{n-1} b \cdot A\)
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: