We are given: \[ A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] Note that: \[ A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0 \] So, since \( A^2 = 0 \), the matrix \( A \) is nilpotent of index 2. Now, expand \( (aI + bA)^n \) using the binomial theorem: \[ (aI + bA)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} (bA)^k \] But since \( A^2 = 0 \), all terms with \( k \geq 2 \) vanish. So, we keep only terms for \( k = 0 \) and \( k = 1 \): \[ (aI + bA)^n = a^n I + n a^{n-1} b A \] Correct answer: \( a^n I + n \cdot a^{n-1} b \cdot A \)
Given A = \(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\) and I = \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\), we want to find (aI + bA)n.
First, note that A2 = \(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\)\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\) = \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\). Therefore Ak = 0 for k ≥ 2.
aI + bA = a\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\) + b\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\) = \(\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}\)
Now, let's examine (aI + bA)n for small values of n:
n = 1: (aI + bA)1 = \(\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}\) = aI + bA
n = 2: (aI + bA)2 = \(\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}\)\(\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}\) = \(\begin{bmatrix} a^2 & 2ab \\ 0 & a^2 \end{bmatrix}\) = a2I + 2abA
n = 3: (aI + bA)3 = (aI + bA)2(aI + bA) = \(\begin{bmatrix} a^2 & 2ab \\ 0 & a^2 \end{bmatrix}\)\(\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}\) = \(\begin{bmatrix} a^3 & a^2b + 2a^2b \\ 0 & a^3 \end{bmatrix}\) = \(\begin{bmatrix} a^3 & 3a^2b \\ 0 & a^3 \end{bmatrix}\) = a3I + 3a2bA
From these examples, we can see a pattern emerging:
(aI + bA)n = anI + n * a(n-1) * b * A
This can be proved through induction as well.
Answer:
\(a^nI + n \cdot a^{n-1} b \cdot A\)