If $$ A = \begin{pmatrix} -5 & -8 & 0 \\3 & 5 & 0 \\1 & 2 & -1 \end{pmatrix} $$ then $ A^2 $ is:
To determine the property of \( A^2 \), we compute \( A^2 \) by performing matrix multiplication: \[ A^2 = \begin{pmatrix} -5 & -8 & 0 3 & 5 & 0 1& 2 & -1 \end{pmatrix} \times \begin{pmatrix} -5 & -8 & 0 \\3 & 5 & 0 \\1 & 2 & -1 \end{pmatrix} \] After matrix multiplication, we find that: \[ A^2 = I \quad (\text{the identity matrix}) \] This means the matrix \( A \) is involutory, as a matrix is involutory if \( A^2 = I \).
Thus, the correct answer is 4. Involutory.
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to: