Given matrix \(A = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix}\), let's solve the matrix equation \(A^2 - KA + 2I = 0\) to find \(K\).
First, calculate \(A^2\):
\[A^2 = A \cdot A = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix}\]
Matrix multiplication gives:
\[\begin{aligned} &\begin{pmatrix} 3\cdot3 + (-2)\cdot4 & 3\cdot(-2) + (-2)\cdot(-2) \\ 4\cdot3 + (-2)\cdot4 & 4\cdot(-2) + (-2)\cdot(-2) \end{pmatrix}\\ &= \begin{pmatrix} 9 - 8 & -6 + 4 \\ 12 - 8 & -8 + 4 \end{pmatrix}\\ &= \begin{pmatrix} 1 & -2 \\ 4 & -4 \end{pmatrix} \end{aligned}\]
Next, substitute into the equation \(A^2 - KA + 2I = 0\):
\[\begin{pmatrix} 1 & -2 \\ 4 & -4 \end{pmatrix} - K\begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix} + 2\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\]
Substitute identity matrix \(I\):
\[\begin{pmatrix} 1 & -2 \\ 4 & -4 \end{pmatrix} - \begin{pmatrix} 3K & -2K \\ 4K & -2K \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\]
Add matrices:
\[\begin{pmatrix} 1 + 2 & -2 \\ 4 & -4 + 2 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix}\]
Equation becomes:
\[\begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix} - \begin{pmatrix} 3K & -2K \\ 4K & -2K \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\]
Match elements for equality:
\(\ \begin{aligned} &3 - 3K = 0\\ &-2 + 2K = 0 \end{aligned}\)
Solve the equations:
\(\ \begin{aligned} K = 3/3 &= 1\\ K = 2/2 &= 1 \end{aligned}\)
Both conditions confirm \(K = 1\).