\[ A A^T = \begin{bmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ -2/ \sqrt{5} & 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 1/5 + 4/5 & -2/5 + 2/5 \\ -2/5 + 2/5 & 4/5 + 1/5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \]
Now, evaluate the matrix expression:\[ A Q^{2021} A^T = A (A^T B^{2021} A) A^T = (A A^T) B^{2021} (A A^T) = I \cdot B^{2021} \cdot I = B^{2021} \]
Next, find \( B^{2021} \):\[ B^2 = \begin{bmatrix} 1 & 0 \\ i & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ i & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2i & 1 \end{bmatrix}, \quad B^3 = \begin{bmatrix} 1 & 0 \\ 3i & 1 \end{bmatrix}, \dots, B^n = \begin{bmatrix} 1 & 0 \\ ni & 1 \end{bmatrix} \]
Thus, \( A Q^{2021} A^T = \begin{bmatrix} 1 & 0 \\ 2021i & 1 \end{bmatrix} \).The value of the determinant where \( \omega \) is cube root of unity is \[ \begin{vmatrix} \omega^2 & \omega & \omega^2 \\ \omega^2 & \omega & \omega^2 \\ \omega^2 & \omega & \omega^2 \end{vmatrix} \]



